The computer revolution has created vast industries and countless jobs that employ professionals educated in electrical and computer engineering, computer science and information technology- all closely related disciplines involving the understanding and design of computers and computational processes. Computer profession specialties constitute a continuum. At one pole is computer science, which is primarily concerned with theory, design and implementation of software- the product being a computer program. At the other pole is computer engineering, primarily concerned with firmware (the micro-code that controls processors), hardware (the processors themselves, as well as entire computers), software (system-level and user/application-level) and interfacing systems (both at hardware and software level) that will allow computer systems to communicate with the outside world as well as with each other. It is not possible, however, to draw a clear line between the two disciplines; many practitioners function to at least some extent as both computer engineers and computer scientists. Computer Engineers distinguish themselves with their versatile set of skills: they can design and build computers, interface them with the outside world and make them talk to each other, develop firmware and also create system-level and user/application-level software.
The Department of Electrical and Computer Engineering offers highly structured programs that emphasize not only the theoretical fundamentals but also the practical aspects of the engineering profession. The curriculum in the first two years of the Computer Engineering and the Electrical Engineering programs are identical. The first-year courses will provide the students with grounding in engineering science fundamentals such as mathematics, physics, chemistry, computer science and the theory of electric circuits. The second year of the program introduces discrete mathematics, data structures and engineering algorithms, and electrical engineering core subjects such as analog and digital electronic circuits and systems. In the third year, students will further study computer architecture, microcomputer systems, object-oriented analysis and design, digital electronics, communication systems and control theory.
In the final year of the program, students will take courses in data communications, digital systems engineering, real-time operating systems, VLSI design and numerical techniques. The fourth year curriculum also allows students further specialization in a variety of subject areas through an extensive technical electives list. During this final year of the program all students must complete a mandatory group design project. The key objective of the Design Project is to encourage students to plan, design and implement their project while developing the skills to make key decisions independently.
The Department of Electrical and Computer Engineering also offers graduate degree programs in Electrical and Computer Engineering. These graduate degree programs allow students to pursue advanced studies and independent research in the areas of signal processing and communications, computer systems engineering, and power engineering.
Further information about the program is available on the Department's home page at www.ee.ryerson.ca.
TRANSITION PROGRAMS
First Year Transition Program: The objective of the first year transition program is to provide students, who may need more time to adapt to the demanding university curriculum, with an immediate opportunity to upgrade their Academic Standing. In the second semester, Phase I of the transition program offers all first semester core courses: CHY 102, MTH 140, MTH 141, and PCS 211 in parallel with the second semester regular program courses. Students who have failed and/or are missing any one of these courses at the end of the first semester are required to upgrade their Academic Standing through enrolling in the transition program. During the condensed Spring semester (May-July) Phase II of the transition program offers all second semester core courses: AER 222, BME 100, CHE 200, CHY 211, CPS 125, CVL 207, ELE 202, MEC 222, MTH 240, MTL 200, and PCS 125. These courses represent a repeat of the second semester regular program courses that were not taken by students enrolled in Phase I of the transition program. These courses will be offered subject to adequate enrolment.
Second Year: The second year transition program is intended to help students who have failed or dropped the second year Fall courses MTH 312 and/or ELE 302 to stay in-phase with their classmates and still have a chance to be promoted to third year in the following academic year. This is accomplished by allowing such students to enroll in MTH 312 and/or ELE 302 in the Winter semester. The course MTH 312 will replace ELE 401 on the student's Winter timetable and ELE 302 will replace ELE 404. The student will then be able to take ELE 401 and/or ELE 404 in a condensed Spring semester (May-July).
Third Year: Similar to the second year transition program, the third year transition program is intended to help students who have failed or dropped the third year Fall courses MTH 514 and/or ELE 532 to still have a chance to be promoted to fourth year by allowing them to enroll in those courses in the Winter semester. The course MTH 514 will replace ELE 635 in the student's Winter timetable and ELE 532 will replace ELE 639. The student will then be able to take ELE 639 and/or ELE 635 in a condensed Spring semester (May-July).
Early Intervention Program
Highly innovative and proactive retention strategies play an important role in helping students build the skills for success in a demanding engineering curriculum. Through the First-Year and Common Engineering Office, the Faculty of Engineering and Architectural Science has incorporated the Early Intervention Program into the first-year engineering experience. At the semester's mid-point, students who are failing courses in their core curriculum are identified and encouraged to attend an interview with a member of our academic support team (First-Year and Common Engineering Program Director/Academic Advisor and/or the Student Counsellor). Together, they discuss options to help reduce the chances of academic failure.
Communications Proficiency and Writing Skills
All new engineering students are automatically enrolled in CEN 199: Writing Skills.
CEN 199 is graded on a Pass/Fail basis, and is used to track the results of the Writing Skills Test (WST) and/or Ryerson Test of English Proficiency (RTEP).
All students admitted into engineering, except those who wrote the RTEP and achieved a grade of ‘B' or higher, are required to write the mandatory Writing Skills Test (WST) during Orientation Week. Students who pass the WST (by achieving a grade of ‘B' or higher) or the RTEP (by achieving a grade of ‘B' or higher) will receive a PASS in CEN 199 and therefore may enroll in the lower level Liberal Studies course of their choice (subject to availability).
Students who do not pass the WST, or achieved a ‘C' level remedial pass on the RTEP, will receive an INP (In Progress Grade) in CEN 199 and will be required to enroll in one of LNG 111, LNG 112, LNG 113, or LNG 121 as their first-year lower level Liberal Studies course. These courses, which count towards lower level Liberal Studies requirements, are writing-intensive humanities and social science courses designed to give students the opportunity to strengthen their foundations in communication. These students will then have three additional opportunities to write and pass the WST:
- In May, following Semester 2.
- During Orientation Week prior to Semester 3.
- In May, following Semester 4.
A PASS in CEN 199: Writing Skills is required to enroll in all third-year engineering courses. Students with a grade of INC in CEN 199 will not be allowed to enroll in any third-year engineering course.
Detailed information is available from the First-Year and Common Engineering Office. Room ENG 377 Telephone: 416-979-5000 ext. 4261.
OPTIONAL INDUSTRIAL INTERNSHIP PROGRAM (IIP): In order to enroll in the IIP students must have a CLEAR Academic Standing after completing all THIRD year required courses with a minimum CGPA of 2.7. If hired by one of the corporations who intend to provide such internship placements, IIP students will spend a period of 8-16 consecutive months, from May to September of the following year, as engineering interns at the corresponding corporations. After the completion of the industrial internship, students return to the academic program to complete their final year of studies. Enrolment in the IIP extends the program length to five years.
After securing an internship position the IIP students will be enrolled in the course WKT 99A/B Industrial Internship Program during the academic year in which they work as interns. This course is graded on a pass/fail basis. Completion of the Industrial Program (IIP) will be identified on the student's transcript as WKT 99A/B: Industrial Internship Program, with the appropriate grade received.
Optional Specialization in Engineering Innovation and Entrepreneurship
This option provides students with a solid foundation in innovation and entrepreneurship theory as well as the immersive experience of advancing and shaping an idea into a business. The lecture courses cover principles of engineering economics, entrepreneurship and innovation management, and technology based new venture creation. The practicum will guide students through the process of identifying a new business concept, developing their technology, and preparing their business for market readiness. For eligibility, registration and course information see Optional Specialization in Engineering Innovation and Entrepreneurship (OS EIE).
Optional Specialization in Management Sciences (OSMS)
Students can enrich their studies and hone their management skills with the Optional Specialization in Management Sciences. Courses within the optional specialization cover four major areas in management sciences: Strategic Engineering Management, Operations Management/Operations Research, Finance, and Organizational Behaviour. For eligibility, registration, and course information see Optional Specialization in Management Sciences (OSMS).
Career Opportunities
Rewarding career opportunities in the field of Computer Engineering will give graduates of this program a chance to work in research and development, design production engineering or quality control, health care systems or the electronic service industry. Computer engineers design computer chips, circuits equipment/systems, plan computer layouts, and formulate mathematical models of technical problems that can be solved by a computer. They design, develop, and test computer hardware and peripheral equipment, as well as, maintain software programs and systems.
Engineering Transfer Credits
Applicants approved into an Engineering program cannot expect to receive any transfer credits in Engineering discipline or Engineering related discipline courses if their applicable post secondary education was not completed at a program accredited by the Canadian Engineering Accreditation Board (CEAB). Refer to www.ccpe.ca/e/index.cfm for a listing of CEAB accredited institutions.
Core and professional engineering course transfer credits will ONLY be granted at the time of admission. An Offer of Admission will notify the applicant of transfer credit decision(s) subject to acceptance of their Offer.
Liberal Studies discipline courses taken at CEAB accredited or non-accredited schools will be considered for either lower- or upper-level liberal studies transfer credit. College courses, in general, are not eligible for transfer credit except in the case of lower-level liberal studies courses.
Liberal Studies
Students must take two lower level liberal studies courses and two upper level liberal studies courses to graduate.
Minors
Students may pursue any Minor offered by Ryerson with exceptions. Please refer to the Minors Policy section of this calendar for further information on individual Minor requirements and restrictions.
The G. Raymond Chang School of Continuing Education Certificates
Undergraduate students wishing to pursue a continuing education certificate program should be aware of possible restrictions. Please refer to the Curriculum Advising website at www.ryerson.ca/curriculumadvising for complete details.