Winter 2019 QMS202 Hypothesis Testing Review

Chapter 11 Fundamentals of Hypothesis Testing: 1-Sample Tests What is the hypothesis testing?

Hypothesis testing begins by taking a statement or claim then assessing it to prove whether it should be rejected or not rejected.

Null Hypothesis:

- Commonly accepted result or what "should" happen.
- It is described with the symbol → H₀

Alternative Hypothesis (is what we input in the calculator)

- Opposite of the null hypothesis
 - "If the null hypothesis is considered false, something else must be true"
 - The conclusion that is reached by rejecting the null hypothesis
- It is described with the symbol → H_a or H₁

HYPOTHESIS TEST:

Null (H₀) has equality \rightarrow equal (=), at most (\leq) or at least (\geq) Alternative: (H_a) has inequality \rightarrow not equal (\neq), less than (<), or greater than (>)

Types of Hypothesis Tests (using t Test as an example, same rules for Z Test)

Left (lower) -tail test: H_{α} : $\mu < \mu_0$

Right (upper) -tail test: H_{α} : $\mu > \mu_0$

Two-tail test: H_{α} : $\mu \neq \mu_0$

Hypothesis Testing One Sample Test Steps:

Step 1: Decide the claim H_0 : (μ for the mean or π for the proportion) (=, \leq , \geq)

H₁ or Ha: $(\mu \text{ or } \pi)$ $(\neq, <, >)$

Step 2: Use given data to support your claim: σ , \bar{x} , n

Step 3: Requirements:

- i) level of significance is α ;
- ii) type of test (2 tail test \neq , right tail >, left tail <)
- iii) critical value z or t (to find critical values under DIST function on calculator)

Step 4a: Run the Calculator (for the One Sample Z Test)

- 1. TEST 2. "Z" \rightarrow 1-S (for the mean) 1-P (for the proportion) 3. Variable
- 4. Choose a sign according to Ha: <, >, or \neq 5. Input given data: σ , \bar{x} , n
- 6. Press EXE \rightarrow we get: $Z = Z_{STAT}$ p = p-value

Step 4b: Run the Calculator (for the One Sample t Test)

- 1. TEST 2. "t" \rightarrow 1-S (for mean)
- 3. Variable (when sx is given) List (when observations data is given)
- 4. Choose a sign according to Ha: <, >, or \neq 5. Input given data: σ , \bar{x} , n
- 6. Press EXE \rightarrow we get: t = t STAT p = p-value

P- Value VS. LEVEL OF SIGNIFICANCE α (Greek letter alpha)

P-value < α: Reject H_0 P-value ≥ α: Don't reject H_0

Conclusion

Reject H_0 , since there's evidence to support Ha

Don't reject H₀: since there's no evidence to support the Ha

Errors in hypothesis testing:

Type I: Reject H_0 , when H_0 is true $\to \alpha$

Type II: Don't reject or fail to reject H_0 , when H_0 is false $\rightarrow \beta$

	Actual Situation		
Statistical Decision	H₀ True	H₀ False	
Do not reject H₀	Correct decision	Type II error	
	Confidence = $(1 - \alpha)$	P (Type II error) = β	
Reject H ₀	Type I error	Correct decision	
	P (Type I error) = α	Power = $(1 - \beta)$	

Chapter 12 Hypothesis Testing: Two-Sample Tests

The Hypothesis for Two-Sample Tests (using two-tailed test as an example)

Null Hypothesis H_0 : $\mu_1 = \mu_2$ or $\mu_1 - \mu_2 = 0$ (for 2 population means, Z Test or t Test);

 $\Pi_1 = \Pi_2$ (for 2 population proportions, Z Test)

 $\sigma_1^2 = \sigma_2^2$ (for 2 population variances, F Test)

Page 3 of 9

Alternative Hypothesis H₁ or H_a:

 $\mu_1 \neq \mu_2$ or $\mu_1 - \mu_2 \neq 0$ (for 2 population means, Z Test or t Test); $\Pi_1 \neq \Pi_2$ (for 2 population proportions, Z Test) $\sigma_1^2 \neq \sigma_2^2$ (for 2 population variances, F Test)

After deciding the H_0 and H_1 , we can use according TEST functions on the calculator to run the test and get the result numbers.

Calculator Tips:

Similar to the Step 4a and 4b on page 2, we now use 2-S for the mean under Z Test and t Test, 2-P for the proportion under Z Test, and F Test for the population variances.

For the 2-S t Test, if given the two samples have equal variance, press "Pooled: On",

If not given or given they have separate / unequal variances, press "Pooled: Off".

F Test for the Ratio of Two Variances (To determine if it is "Pooled On" or "Pooled Off" for the 2-S t Test)

Equation: F STAT = S_1^2/S_2^2 , the F STAT test statistic follows an F distribution (always right skewed and bulk on the left) with numerator df n_1 -1 and denominator df n_2 -1

F critical value:

- 1). For a two-tail test, the two critical values are F Upper ($F_U = F_{\alpha/2, \, n1 \, -1, \, n2 \, -1}$) and F Lower ($F_L = F_{1 \, -\alpha/2, \, n1 \, -1, \, n2 \, -1} = 1/F_U$) Reject H_0 if $F_{STAT} > F_U$ or $F_{STAT} < F_L$, otherwise, do not reject H_0
- 2). For a lower/ left tail test, there is one critical value, $F_L = F_{1-\alpha, n1-1, n2-1}$

Reject H_0 if $F_{STAT} < F_L$, otherwise, do not reject H_0

3). For an upper/right tail test, there is one critical value, $F_U = F_{\alpha, \, n1 \, -1, \, n2 \, -1}$

Reject H_0 if $F_{STAT} > F_U$, otherwise, do not reject H_0

Tip: For F Test, input data in the testing list or the sample standard deviation S_1 (for sx1) and S_2 (for sx2), which are the square root of the sample variances S_1^2 and S_2^2

<u>Tip! For the Two dependent / paired Sample Test, we still need to use 1-S under t Test</u> with the computed differences data with degrees of freedom (df) = n1 + n2 -2

When are the Two samples dependent?

Two Dependent / Paired Samples:

Type 1 – Repeated Measurement taken from same item/individual: Dependent samples are characterized by a measurement, then some type of intervention, followed by another measurement. (<u>Before and after</u>). E.g. A study wants to test how well runners perform with and without the new tech shoes. (still the same runners)

Type 2 – Matched samples according to some characteristics: because the same individual or item is a member of both samples. E.g. Consumers wish to know the differences in price of same items sold at two grocery stores. (still the same items)

Two Independent Samples:

The samples chosen at random are not related to each other. E.g. Study the average salaries of company X and firm Y and since a person cannot be an employee in both companies in most cases. (not the same employees)

Confidence Interval Estimate for the Mean Difference

$$\overline{D} - t_{\frac{\alpha}{2}} \times \frac{S_D}{\sqrt{n}} \le \mu_D \le \overline{D} + t_{\frac{\alpha}{2}} \times \frac{S_D}{\sqrt{n}}$$

Testing the Proportions of Two Independent Populations (using 2-P under Z Test)

If follows the same decision rules for 1 Sample Z Test mentioned before with

$$\bar{p} = \frac{X_1 + X_2}{n_1 + n_2}$$
 , $p_1 = \frac{X_1}{n_1}$, $p_2 = \frac{X_2}{n_2}$

Chapter 13 One-Way ANOVA

What do we use ANOVA for?

- Calculates the difference among more than 2 population means
- Analysis Of Variance → analyze the difference among the group means, not their variances
- Within group variation: measures random variation
- Among-group variation: due to difference from group to group

Total Variation (SST) = Among-Group Variation (SSA) + Within Group Variation (SSW)

$$df = n - 1$$

$$df = c - 1$$

$$df = n - c$$

Page 5 of 9

ANOVA Hypothesis for the means

Ho: $\mu_1 = \mu_2 = \mu_3 \dots \mu_c$ Ha: Not all μ_i are equal (where $j = 1, 2, 3 \dots c$)

ANOVA F Test

- ANOVA is conducted to find the F_{STAT} for 3 or more groups of samples
- **Assumptions:** Randomness & independence, normality, and homogeneity of variance (equal variance)
- It is right skewed, and we conduct the upper tail test, reject H_0 if $F_{STAT} > F_{\alpha}$
- First, we look at Levene's Test, then we conduct ANOVA F-Test. Then, we analyze "Post-Hoc" to determine which μ_i is different
- **Ho:** $\sigma_1^2 = \sigma_2^2 = \sigma_3^2 ... = \sigma_c^2$ (equal variance)
- **Ha:** At least one σj^2 is different (unequal variance)

ANOVA Summary table:

C = # of groups $n = \text{total sample size} = c \times \text{observations in each group}$ For example: 4 groups with 8 values, $n = 4 \times 8 = 32$

Sources	df	Sum of sq.	Mean of Sq.	F STAT
			(var)	
Among Groups	c-1 = 4 - 1	SSA = 240	MSA = 240 / 3	F=MSA/MSW
(n:df)	= 3		= 80	= 80 / 20 = 4
Within Groups	n-c = 32 - 4	SSW = 560	MSW= 560/28	
(d:df)	= 28		= 20	
Total	n-c+ c-1 = n-	SST =SSA+SSW		
	1 = 31	=800		

Relations in the table above

SSA + SSW = SST MSA = SSA / (c - 1) MSW = SSW / (n - c) MST = SST / (n - 1) $F_{STAT} = MSA / MSW$

Levene's Test:

- To test the assumption of mean, Levene's test will be given
- The data should have equal variance in order to compute ANOVA F Test
- Sig = p-value, compare p-value with α , to make the decision p-value $\geq \alpha$, do not reject H_0 , they all have equal variance, (FSTAT ≈ 1) p-value $< \alpha$, reject H_0 , not all the variances are equal, (FSTAT > 1)

Example →

Page 6 of 9

Using the calculator to do an ANOVA, given data \rightarrow **Hypothesis:**

Ho: $\mu_1 = \mu_2 = \mu_3$

Ha: Not all μ_j are equal (where j = 1,2,3)

!! (DO NOT WRITE IT AS $\mu 1 \neq \mu 2 \neq \mu 3... \mu c$)

<u>A</u>	<u>B</u>	<u>C</u>	
2	5	5	
4	6	8	

Calculator Instructions:

- Input all group/factor name numbers (repeat as needed) in a naming List 1, then input all data-values accordingly in List 2 (see the table on the right)
- 2) STAT →TEST→ ANOVA → How Many? 1 (always) → Factor A: List 1 (the naming list) → Dependent: List 2 (the observations data list) → EXE
- 3) The results such as F_{STAT} and p-value are computed.

List 1 – FactorA	List 2 – Dependent
1	2
1	4
2	5
2	6
3	5
3	8

Fining F Critical Value: 1). STAT \rightarrow DIST \rightarrow F \rightarrow InvF; 2). Area: α 3). n:df = (c - 1) d:df = (n - c)

After conducting ANOVA F test:

Reject Ho \rightarrow use POST-HOC to determine which μ_j is different Do not reject \rightarrow You're done!

Post-Hoc

- Known as the Tukey-Kramer Procedure for multiple comparison
- Post Hoc Data will be given, you just need to analyze it
- Helps determine which μ_i is different
- To analyze Post Hoc, compare the p-value with α

Example: $\alpha = 0.05$

Groups	Mean Difference	Sig.
A compared to B	13	0.029
A compared to C	5	0.318
B compared to C	1	0.118

Comparison –

H ₀ μA = μB	p-value: 0.02 < α: 0.05	
H₁ µA ≠ µB	→ reject H₀ , so μA ≠ μB	
$H_0 \mu A = \mu C$ p-value: 0.03 < α : 0.05		
H₁ μA ≠ μC	→ reject H₀ , so μA <mark>≠</mark> μC	
H_0 μB = μC p-value: 0.188 > α: 0.05		
H₁ µB ≠ µC	\rightarrow do not reject H ₀ , so μ B = μ C	

Analysis – μA is the different since it doesn't equal to $\mu B = \mu C$ (*If another case results give you that $\mu A < \mu B$ and $\mu A > \mu C$, then $\mu C < \mu A < \mu B$)

Page **7** of **9**

"Train to Learn Effectively"

TRS 2-168 | (416) 979 - 5000 (Ext. 2435) | trsm.academicsuccess@ryerson.ca

Chapter 14 Chi-Square Tests (χ^2 , is pronounced as [kaɪ] square) Chi-Square Test is for:

• Testing the difference between <u>2 or more</u> population proportions

• Whenever we are given categorical responses, we use a contingency table

	Column Variable (Group)		
Row Variable	1	2	Totals
Items of interest	X ₁	X ₂	X
Items not of interest	n1 - X1	n ₂ - X ₂	n - X
Totals	n ₁	n ₂	n

• The example 2 x 2 contingency table can display numbers or percentage

Right skewed distribution with a right/upper tail test, **Reject H_o if** χ^2 stat > χ^2 a

The χ^2 stat test statistic approximately follows a chi-square distribution with (r-1) x (c-1) degree of freedom for rows x columns contingency tables

Computing the Estimates Overall Proportion for 2 Groups:

$$\overline{P} = \frac{x1 + x2}{n1 + n2} = \frac{X}{n}$$

To test two-sample population proportion, we can use <u>2-P under Z Test</u> for H_0 : $\pi_1 = \pi_2$, $\pi_1 \le \pi_2$, $\pi_1 \ge \pi_2$ H_1 : $\pi_1 \ne \pi_2$, $\pi_1 > \pi_2$, $\pi_1 < \pi_2$ And Chi-Square Test only for H_0 : $\pi_1 = \pi_2$ H_1 : $\pi_1 \ne \pi_2$

Chi-Square (2 Groups) Test Calculator Instructions:

STAT - TEST - CHI - 2Way - Observed: Mat A - >MAT - Mat A - DIM: set up your rows/columns for both Mat A and Mat B before anything m = # of rows n = # of columns

- Mat A: only enter values here!! Enter values from the contingency table
- EXIT x2 Go down to "Expected: Mat B", press EXE

The calculator shows the x²-value, p-value, and the degree of freedom

- Press Mat at the bottom right \rightarrow Mat B \rightarrow EXE
- Obtain new values (only fe values)

Critical Value Calculator Instructions:

STAT - DIST \rightarrow Chi \rightarrow InvC - Area = α - df: obtain from test result - EXE (Since it is a right tail test, there is only 1 value and it is a positive number)

Chi-Square Test for Difference Among 3 or More population Proportions:

Ho: $\pi_1 = \pi_2 = \pi_3 \dots \pi_c$

Ha: Not all π_j are equal (where j = 1,2,3...c)

The contingency table is rows x columns

<u>Calculator instruction for Chi-Square (more than 2) Test and for Critical Value are the same as above</u>

Chi-Square Test of Independence

- To test the independence of two categorical variables
- Right skewed; right/upper tail test
- Almost the same as x² test in terms of decision rules, but the hypothesis and conclusion are different

H₀: The two categorical variables are independent (there is no relationship between them)

 \mathbf{H}_{a} : The two categorical variables are dependent (there is a relation between them)

Equation:
$$\chi^2 \text{ STAT} = \sum_{all \ cells} \frac{(f_o - f_e)^2}{f_e}$$

Expected Frequency:

 $f_e = (Row Total \times Column Total) / n$

Row total = sum of the frequencies in the row

Column total = sum of the frequencies in the column

Degrees of Freedom = (r - 1) (c - 1)

<u>OR</u> you can use the calculator instruction above to conduct the x^2 test and to find the y^2 critical value

Condition: are all the expected frequency $(f_e) \ge 5$ where $f_e = (row total \ x \ column \ total)/(row total or total)$